
Visualising Generative Spaces Using Convolutional Neural
Network Embeddings
Oliver Withington*, Laurissa Tokarchuk

Queen Mary University of London, Mile End Rd, Bethnal Green, London, UK, E1 4NS

Abstract
As academic interest in procedural content generation (PCG) for games has increased, so has the need for methodologies
for comparing and contrasting the output spaces of alternative PCG systems. In this paper we introduce and evaluate a
novel approach for visualising the generative spaces of level generation systems, using embeddings extracted from a trained
convolutional neural network. We evaluate the approach in terms of its ability to produce 2D visualisations of encoded
game levels that correlate with their behavioural characteristics. The results across two alternative game domains, Super
Mario and Boxoban, indicate that this approach is powerful in certain settings and that it has the potential to supersede
alternative methods for visually comparing generative spaces. However its performance was also inconsistent across the
domains investigated in this work, as well as it being susceptible to intermittent failure. We conclude that this method is
worthy of further evaluation, but that future implementations of it would benefit from significant refinement.

Keywords
procedural content generation, generative spaces, convolutional neural networks

1. Introduction
Procedural Content Generation (PCG) for games, despite
being a relatively new research field, has become a very
active and diverse one, with an increasing volume of
novel works being produced across numerous subdo-
mains of PCG research. Whenever a PCG system involves
stochastic elements in its generative process to produce
diverse output, it is important to understand what out-
puts are possible from a given system, a concept often
referred to as a PCG system’s ‘generative space’. This
is important for both PCG researchers, as well as game
designers. In commercial settings, designers ideally want
to know that all possible artefacts that could be generated
from a given PCG system are desirable for their purposes,
and that an alternative system or configuration would
not produce better artefacts. Similarly, PCG researchers
often want to be able to credibly claim that a novel sys-
tem or approach is a meaningful improvement over what
was previously possible, and the qualities of the output
are a valuable component of any comparison.

In this work’s domain of PCG systems focused on the
generation of game levels, a common approach for un-
derstanding generative spaces is to produce simplified
visualisations of system output, most commonly using
Expressive Range Analysis (ERA) [1]. ERA is an approach
for understanding generative spaces by visualising a sam-

Experimental Games Workshop 2022 (EXAG) at AIIDE 2022, October
24-28, Cal Poly Pomona
*Corresponding author.
$ o.withington@qmul.ac.uk (O. Withington);
laurissa.tokarchuk@qmul.ac.uk (L. Tokarchuk)
� http://owithington.co.uk/ (O. Withington)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

ple of levels in terms of two of their behavioural charac-
teristics (BCs), which are most commonly heuristics for
aesthetic or gameplay related qualities. ERA is commonly
used for both the qualitative understanding of PCG sys-
tem output, as well as quantitatively to compare aspects
of alternative generators such as their relative diversities
of output. However, ERA has several weaknesses as a
visualisation approach, some of which we argue can be
addressed with the alternative method presented in this
paper. Most relevantly, ERA only allows for visualisions
of generative spaces in terms of two BCs while main-
taining the readability of a 2D graph, and also requires
that BCs are calculated for every new set of levels to be
visualised.

In this paper we present a novel alternative method for
producing two dimensional visualisations of generative
systems using Convolutional Neural Networks (CNNs), a
subtype of deep learning system which are widely used
for image recognition tasks [2]. The basic operation of
this approach is as follows. First, we train a CNN to pre-
dict the BCs of levels based on their structure. This CNN
is then used to extract embeddings for each level we wish
to visualise from the penultimate layer of the network.
These embeddings are assembled and then compressed
using principal component analysis (PCA), a dimension-
ality reduction algorithm, to represent each level using
only two dimensions. These compressions can then be
visualised on a 2D scatter-plot in which each point rep-
resents a level. The goal is that these 2D visualisations
are similar to conventional ERA, except that distance
between levels is closely correlated with their values for
multiple BC values rather than just two. The extent to
which this is the case is the focus of this paper’s exper-
iments. The stronger the correlation the more credibly

mailto:o.withington@qmul.ac.uk
mailto:laurissa.tokarchuk@qmul.ac.uk
http://owithington.co.uk/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


we can claim that we are able to realise the benefits of
ERA without some of its weaknesses.

2. Background and Related Work

2.1. Expressive Range Analysis
The most widely used and influential approach for visual-
ising the generative spaces of PCG systems is Expressive
Range Analysis (ERA). It was introduced by Gillian Smith
and Jim Whitehead in 2010 [1] as a way for the design-
ers of procedural level generators to understand their
generative spaces.

Its basic mode of operation is appealingly simple. First
a set of levels is generated to represent a generative space,
and then annotated with BCs of interest (also often re-
ferred to as simply ‘metrics’ [3]). These BCs can be quan-
titative heuristics for aspects of the experience of playing
a level, such as heuristics for difficulty [1, 4, 5], or they
can be more abstract features such as how linear a level
is [1]. The set of levels can then be visualised as a 2D
scatter plot or heatmap, in which the levels location is
specified by two selected BCs.

There have been some evolutions and innovations in
how ERA can be applied, such as Summerville’s work
on visualising multiple BCs simultaneously using corner
plots [6] and Cook et als work on designing interactive
tools for conducting ERA on a PCG system with tunable
parameters [7], but most commonly ERA is used in its
original form and it is is still used in contemporary state-
of-the-art PCG research [8, 5, 9].

2.2. Machine Learning and PCG
This work is also inspired by the domain of Machine
Learning-based PCG approaches, commonly collectively
referred to as PCGML. Over the past decade there has
been a proliferation of different approaches using ML to
tackle different challenges within PCG. They have been
used to achieve diverse goals such as: generating new lev-
els from single training examples [10]; blending training
from alternative games to generate content for unseen
games [5]; and powering AI level design partners [11].
A belief shared and reinforced by these works as well as
this one, is that useful knowledge about game levels and
their utility can be predicted from their representations
using ML.

The approach in this paper uses a specific type of
Neural Network called a Convolutional Neural Network
(CNN). They are most commonly used for image recog-
nition and analysis, but have also seen success in PCG
research focused on level generation [12, 13, 14]. How-
ever the primary inspiration for this approach did not
come from the domain of PCG research but instead from
that of art analysis, specifically the work of [15]. They

used a CNN-based approach to produce 2D visualisations
of sets of artistic works which they then aimed to order
based on age, without the system having prior knowledge
of the creation date. Their use of CNNs to create infor-
mation rich 2D representations of sets of artistic content
appeared directly relevant to the challenge of visualising
PCG generative spaces, and led to the development of
this project.

In this work we make use of a popular CNN archi-
tecture called VGG-16 [16], which was developed by Si-
monyan and Zisserman and was a winning entry in the
ImageNet Large Scale Visual Recognition Challenge [2].

2.3. Level Generators and Benchmarks
In this work we make use of two open source level
corpuses to experimentally assess our visualisation ap-
proach.

The Mario AI Benchmark is a widely used experimen-
tal platform which has helped to make Super Mario one
of the most popular domains for both PCG research and
game AI research more broadly. It was developed to
support the 2009 Mario AI competition [17] but it has
gone on to be used in numerous research projects, includ-
ing contemporary research on novel PCG approaches
[10, 18, 19, 20]. The modern version of the benchmark,
supported by Ahmed Khalifa et al [21], contains nine sets
of 1000 Mario levels produced by different level genera-
tors as part of Horn et als work to compare alternative
PCG systems [4].

The other source of visualisable level sets that we make
use of is Boxoban, an open source version of Sokoban de-
veloped by [22] to support their research into model-free
planning [23]. As part of their work they released a large
set of levels which were procedurally generated with
the goal of having varying levels of challenge for rein-
forcement learning agents. It consists of over 1.5 million
levels, each composed of a 10 by 10 grid with four goals.
The levels are split into three sets: Medium, Hard and
Unfiltered. The Medium and Hard sets were generated
using the approach explained in [23], and were sorted
based on the ability of a trained agent to solve them. The
Unfiltered set were generated using the approach of [24],
implemented by Guez et al, and were not separated by
difficulty.

3. Approach
In this section we present the main stages and steps
involved in this approach for producing visualisations
of sets of 2D game levels, as well as the process
we used to investigate whether or not the visualisa-
tions contain useful information. The code used to



create and validate the visualisations is available at
github.com/KrellFace/Generative-Space-Compression.

3.1. Stage 1: CNN Architecture and
Training

The first stage of the approach involves training a CNN to
be able to predict level BCs based on the levels encoded
structure. In this work we implement two alternative
CNN architectures: VGG-16 and a simple 5 layer ‘Basic’
CNN to use as a comparison point for the larger and more
complex VGG-16 implementation. In VGG-16’s original
configuration, it used a softmax layer for its final layer to
make class predictions for input images. However, as we
are predicting BCs which are continuous numeric values
we replace the softmax layer with a final dense layer.
Apart from this change we use VGG-16 in its original
configuration D form as described in [25]. The simplified
‘Basic’ CNN we implement only uses three convolutional
layers interlaced with two max pooling layers. See Table
1 for a more detailed description of the two architectures.

Table 1
CNN architectures implemented

Basic VGG-16
Conv-32 Conv-64 x 2
MaxPool MaxPool
Conv-64 Conv-128 x 2
MaxPool MaxPool
Conv-64 Cov-256 x 3
FC-64 MaxPool
FC-(BC Count) Conv-512 x 3

MaxPool
Conv-513 x 3
MaxPool
FC-4096 x 2
FC-1000
FC-(BC Count)

To allow the CNN to process the levels, we first con-
vert their character based representations into one-hot
encoded representations. In the Boxoban and Mario AI
Benchmark level corpuses each level is stored as a two
dimensional matrix of characters, in which each charac-
ter represents a specific tile that appears at that position.
We take these 2D representations and convert them into
a three dimensional one-hot matrix, with the size of the
3rd dimension equal to the number of possible tile types.
The 3D matrix is effectively an assembled set of 2D ma-
trices for each tile type, in which each value is either 0,
or 1 in the case that a tile of that matrix’s type appears at
that location (See Figure 1 for a visual explanation). This
conversion to one-hot matrices is often used in PCGML,
and was directly inspired by the work of Volz et al on
their work using GANs to generate Mario levels [13].

Figure 1: Diagram showing how we generate a 3D one-hot
matrix representation of game levels (Note: Only a subset of
block types shown for brevity. Empty Tiles are included as a
block type)

For each training level, we first calculate its BCs and
then process it into a one-hot 3D encoding. The CNN can
then be trained to predict the BCs of unseen levels based
on their one-hot encoded structures using this training
data. Once training is completed the model is saved,
ready for reuse in Stage 2.

3.2. Stage 2: Embedding Extraction and
Compression

The next stage of the approach centres on using the
trained neural network to produce level set visualisa-
tions in the form of 2D scatterplots, in which we intend
that levels with similar BC values appear closer together
in the visualisation than those with dissimilar character-
istics.

To accomplish this we take every level to be visualised,
which in this paper’s experiments are levels not used in
the original training, and process them with an instance
of the previously trained CNN. However, rather than
using the predicted BC values, we instead extract the
output features from the penultimate fully connected
dense layer from the CNN instance. In the case of VGG-
16 this means extracting a 1D feature map of size 1000,
and for the ‘Basic’ CNN of size 64.

As we want to visualise these levels in two dimensional
space, we then need to reduce the dimensionality of the
data for each level. To achieve this we assemble the one
dimensional feature maps for each level into a combined
matrix, in which each row represents the penultimate
layer outputs for a given level in the dataset to visualise.
We then apply principal component analysis (PCA), a
widely used dimensionality reduction algorithm to re-
duce the dimensionality of the dataset. PCA operates by
constructing new variables out of linear combinations of
the original variables in such a way that the top principal
components account for the maximal possible variance in



the data (See [26] for a more detailed explanation of PCA).
We can then select the top two principal components and
use them to represent the sets of levels using two dimen-
sions, while still accounting for a substantial amount of
the variance found in the original N dimensions extracted
from the CNN. These levels can then be visualised on a
standard 2D scatter plot, with their positions dictated by
the principal components.

3.3. Stage 3: Validating the Visualisations
The final stage of our approach is to validate whether the
generated visualisations contain information that a hu-
man designer might find useful. In this work we use the
same approach as [27] and look for correlation between
euclidean distances between levels in the visualisations,
and the difference between their BC values. If strong cor-
relation is found between the euclidean distances and the
BC differences, then that means that levels with similar
values for the BCs are found close together, and those
with dissimilar BC values are further apart.

To calculate the level of correlation we first calculate
the euclidean distance between every level pair in the
visualisation, as well as the absolute difference between
their BC values. We then calculate Spearman’s rank cor-
relation coefficient, also known as Spearman’s 𝜌. Spear-
man’s 𝜌 is commonly used to investigate the linear cor-
relation between variables when the distribution is not
expected to be normal. It uses the relative rankings of
the data points rather than their values, to give a coeffi-
cient score from 0 to 1 on how strong the correlation is,
along with a P value indicating the likelihood that the
correlation found is actually present. These correlation
coefficients are then used as the heuristic for the perfor-
mance of that visualisation. The expectation is that the
stronger the correlation the more useful the visualisa-
tions would be to a designer.

4. Experiment Design
In this section we explain the design of the experiments
that we ran to conduct an initial investigation of this
approach.

4.1. Level Sets and Encodings
For these experiments we use two pre-generated level
corpuses: the level sets provided as part of the Mario AI
Benchmark and the training levels provided as part of
Guez et als research using Boxoban. Both corpuses meet
several requirements for a straightforward application of
the approach we present in this work. Both are composed
of 2D tile-based levels in which every tile type is repre-
sented by one of a discrete set of values. Each level also

Figure 2: Diagram showing the high level flow of all three
stages of this generative space visualisation approach, as well
as its validation in terms of BC correlation

has the same fixed size, 10 x 10 in the case of Boxoban and
16 x 100 in the case of the Mario AI Benchmark, which
avoids the need to regularise them before training the
CNN.

The two sets are also interestingly distinct. The Mario
level sets come from a set of nine distinct generators
with substantial variety in their structural and gameplay
features (See both [4] and [27] for evidence of this). In
contrast the Boxoban set all come from similar generative
approaches implemented by the same team and are differ-
entiated instead by difficulty, a trait that is less obvious
than structural features. This combined with the smaller
level representations, and the commonalities between all
levels (all containing four boxes and four goals) mean it
is significantly harder to differentiate between different
levels. It is hoped that the difference of these two sets
will help to highlight different strengths and weaknesses
of the tested visualisation approaches.

In terms of the encoding used, in the case of Boxoban
no preprocessing was required. Only five tile types are
used in the level representation (empty, solid, box, goal,
player) and we use all five in the one-hot encodings,
giving a one-hot matrix with dimensions (10, 10, 5). In the
case of the Mario level sets we conduct a preprocessing
step of condensing the original tile types into a smaller
grouped set. The original representations are composed
of 28 total tile types, each of which we map to one of five
values. All traversable tiles (including tiles that indicate



the spawn point and level end point) are mapped to empty
space and all enemies are mapped to a unifying enemy
type. The same is done with solid blocks, pipe blocks
and blocks that contain a reward. While this reduces
the accuracy of the representations, it does increase the
performance by reducing the complexity. The one hot
representations are therefore of size (10, 16, 5).

4.2. Behavioural Characteristics Used
For both Mario and Boxoban domains we calculate four
BCs for each level. Each BC is either one directly used in
or inspired by prior work using ERA or Quality-Diversity
(QD)-based PCG. QD-based PCG requires a designer to
determine at least two behavioural dimensions to de-
fine the diversity component of the search, making it
a valuable source of inspiration for BCs. Each BC was
selected for both being fast to calculate from the level
representation, as well as appearing in prior PCG work.

The four BCs calculated for the Mario domain were
as follows: Empty Space (ES), a simple count of empty
tiles, which was inspired by ERA implementations such
as [28] which use block count-based BCs as quick to
calculate heuristics for diversity. ES was calculated for
both the Mario and Boxoban domains. Enemy Count
(EC), Linearity (Lin) and Density (Dens) are all BCs which
have been widely used in ERA applied to procedurally
generated platformer levels [1, 4, 5], and make up the
remaining three BCs calculated for the Mario levels.

ERA and QD-search has been less commonly applied to
top-down games like Boxoban than to platformer games
like Super Mario. However, there are still sources to
draw on. We calculate the Contiguity Score (CS), a BC
which has been used in prior QD-search based PCG [29],
which measures how clustered together the solid tiles in
a level are by incrementing the score by 1 for every solid
block that is adjacent to another. We also calculate the
Adjusted Contiguity Score (ACS), which divides the CS
by the number of solid blocks present to give a heuristic
for tile clustering independent of their number. Finally
we calculate a Corridor Count (CC), which counts every
location in the level in which the player can only move
north or south but not east or west, or vice versa. This is
intended to be a similar BC to Density except applicable
to a top down game, and has appeared in work such as
[9].

4.3. Compression Approaches Used
As discussed in more detail in the Approach section, we
implement two alternative CNN architectures to produce
alternative visualisations, referred to in results as ‘VGG-
16’ and ‘Basic’.

We also implement the approach of [27], which works
similarly to this paper’s CNN based approach except

without the CNN processing layer. Instead of using PCA
to compress the CNN embeddings, PCA is instead applied
directly to the one-hot encoded levels. This approach
makes for an interesting benchmark, as it both aims to
generate similar 2D visualisations of generative spaces,
while also requiring less setup and configuration in the
form of calculating BCs and model training. We refer to
this as ‘Vanilla DR’ in these experiments.

In this work we do not report on the explained vari-
ance of the top two principal components derived from
applying PCA within any of the approaches as it is not rel-
evant to the quality final output. However, prior reviews
of this work have highlighted that explained variance
could be a valuable metric to extract during CNN training
for evaluating how effectively the model is learning to
indirectly produce the desired visualisation, something
we aim to investigate in future work.

4.4. CNN Parameters
Both networks were compiled with an Adam optimizer.
After initial experimentation a learning rate of 0.01 was
selected for the basic CNN, and 0.0005 for VGG-16, as
this appeared to give the best performance in their re-
spective architectures. Both used the mean absolute error
(MAE) for their loss functions. MAE was selected as the
loss function as we expected there to be significant level
outliers in terms of their BC values, a feature better ac-
counted for by calculating absolute errors rather than an
average.

Each CNN instance was given 100 epochs in which to
train, though in the final experiments there were minimal
improvements in terms of loss from as early as epoch 30
in certain configurations. Future implementations could
usefully implement early stopping to avoid over-fitting
and to save on computational resources.

4.5. Level Selection and Splitting
For each run 1000 levels were selected at random, dis-
tributed evenly between each generative approach for
each game. For Mario they were evenly selected from
the nine different generators, and for Boxoban they were
evenly split between the three different sets.

For each combination of BC and CNN design a new
instance of the network was generated and trained. For
the CNN training, the 1000 levels were split into a set of
800 used to train the network, and a set of 200 to produce
the final visualisation.

We note that we are using a comparatively low amount
of data to both train and test the neural networks. With
just 1000 levels per run, a train/test split of 0.8 and a
high of nine generators for the Mario domain this means
that there are less than 90 levels from each generator
in each training set. While this choice was primarily



Table 2
Main Results - Average of 5 Runs ± StdDev. ’*’ indicates cases where the average P value + StdDev across the 5 runs was
greater than 0.01. The best results for each game domains BC are in bold

Mario Boxoban
ES EC Lin Dens ES CS ACS CC

VGG-16
0.640
±0.0480

0.255
±0.0437

0.225
±0.0470

0.166
±0.0455

0.565
±0.303

0.555
±0.296

0.452
±0.252

-0.00410
±0.0278*

CNN-Basic
0.350
±0.154

0.325
±0.115

0.527
±0.121

0.391
±0.0548

0.321
±0.147

0.271
±0.136

0.207
±0.115

0.0142
±0.0225*

Vanilla DR
0.506
±0.0340

0.337
±0.0165

0.411
±0.0165

0.246
±0.0130

0.0255
±0.0145

0.0195
±0.0127

-0.0248
±0.00930

-0.0732
±0.00387

made to limit the computational resources required, it
also helps to reinforce any potential claim about this
approach having commercial utility. The more data that
is required for a given generative space visualisation
approach, the less widely useful it can be in domains
where generating levels is either resource intensive, or
in domains where it is a requirement to test numerous
different configurations of a generator.

4.6. Number of Runs
To increase the reliability of the results and to gain insight
into how much variance there is with the approach, we
conduct five runs for each of the two games and then
present the average of the results for each compression
method.

4.7. Resources Required
All experiments were run on a Dell laptop with an i5-
10310U CPU with 16.0 GB of RAM. In total all experi-
ments took ≈11 hours to run using this set up.

5. Results & Discussion

Figure 3: Best performing Boxoban visualisation of all runs
across all visualisation methods. From Run 2 of the VGG-16
CNN Implementation. Average BC correlation: 0.566

5.1. Results Overview
The experimental results give us a view of our approach
that is both positive overall, but also mixed. The CNN-
based visualisations substantially outperformed Vanilla
DR in the Boxoban domain in terms of the BC correla-
tions of their visualisations, and also performed well on
individual BCs in the Mario domain. However, there was
significant inconsistency in the performance of CNN ap-
proaches, suggesting that while the approach is promis-
ing, the implementation used needs significant refine-
ment.

In Figures 3 and 4 show the best performing visualisa-
tions in terms of average BC correlation for the Boxoban
and Mario domains respectively. These are presented to
demonstrate what the final output of the visualisation
process is, as well as to give an idea of how it could be
used to qualitatively understand and compare genera-
tors. For example, the Mario visualisation suggests that
the Ore generator highlighted in dark purple generates
levels unlike any alternatives, whereas the Boxoban vi-
sualisation suggests that none of the three generative
approaches produces substantially different levels to the
other two. The fact that at least in the Mario domain
the visualisation approach was able to separate and dis-
tinguish between the levels from alternative generators
is positive, as characterising the output of alternative
generators is a valuable potential use case.

Displayed with each visualisation is the pairs of levels
which are the most proximal and distant in terms of their
Euclidean distance in the visualisation. If the visualisa-
tion is working well, we would expect the most proximal
pair to be the most similar pair of levels in the set and
visa versa. They suggest that while the Boxoban visuali-
sations performed better than those for Mario in terms
of the BC correlation heuristics, that this may not mean
the visualisations are in fact more useful. If we examine
the most proximal pair in Figure 3, it is not obvious that
the levels are especially similar or that the experience
of playing them would be similar either. In contrast the
most proximal Mario pair in Figure 4 do appear substan-
tially similar. It is possible that the smaller a game level’s



Figure 4: Best performing Mario visualisation of all runs across all visualisation methods. From Run 2 of the Basic CNN
Implementation. Average BC correlation: 0.476

representation is, the more important each tile choice
becomes, and therefore the more important attaining a
high level of BC correlation becomes.

We expected due to its complexity and performance in
other domains, that VGG-16 would outperform both the
basic CNN and the Vanilla DR visualisations, and in 4/8
domains this was the case as we can see in Table 2. Its
performance was dominant in visualising the Boxoban
domains, only struggling on the CC BC. However, given
the underperformance across the board on the CC BC, we
expect this to be an issue related to the structure of the
CNN’s themselves, perhaps related to the convolutional
window being too small to detect the corridor structure.
The Basic CNN implementation also substantially out-
performed Vanilla DR in the Boxoban domain, further
reinforcing the idea that this CNN-based approach can
perform well for certain games.

However, in the Mario domain the results were much
more mixed. VGG-16 performed worse than the simple
Basic CNN in 3 of 4 BCs, and Basic CNN was outper-
formed by Vanilla DR in 2 of 4. We suspect this failure
is partly a result of quirks of the dataset. Vanilla DR
found average EC correlations of 0.337, despite enemies
being a sparse feature in most levels which should mean
Vanilla DR is worse at accounting for them. This leads
us to suspect that within the levels tested, EC correlates
significantly with the easier to detect structural features
like the amount of empty space. The poor performance
of the CNN-based approaches is still concerning however,
especially as they require significantly more set-up and
compute costs than Vanilla DR.

Additionally, the CNN-based approaches were prone to
failure. Despite performing best in the Boxoban domain,
the standard deviations for VGG-16 correlations were
as high as 0.303 in the case of the ES BC. Examining
the individual run data for both it and the Basic CNN
shows that in some runs each CNN implementation failed
during training to learn the relationship between level

structure and BCs. Further experimentation is needed to
investigate what was causing the intermittent failures,
something we discuss in the next section.

5.2. Future Work and Improvements
On the technical front the primary aspect we need to
address is the performance of the CNN training process.
While we cannot be certain of what was causing the in-
termittent failures we have several different options to
explore. First, we intend to further investigate the effect
of tuning hyperparameters such as the learning rate to
achieve a more consistent performance. We can also im-
plement and evaluate alternative CNN implementations
which have outperformed VGG-16 in certain domains,
such as ResNet-50 [30] and Xception [31]. However, all
of these architectures share the conceptual weakness
in that they were designed and optimised for analysing
images rather than encoded game levels. Future work
could investigate whether a bespoke CNN architecture
for predicting level BCs could give improved results.

Our future work will also further explore the perfor-
mance gap between the Mario and Boxoban domains.
It is possible that Vanilla DR is simply especially well
suited to these specific Mario level sets, or that the CNN
visualisation approach is ill suited to the larger level rep-
resentations. Beyond further tuning the CNN training
parameters, the best way of exploring this discrepancy
is to explore alternative generative spaces, defined by
alternative BCs. Related to this point, we also intend to
start including BCs extracted from simulated play of the
input levels by a level playing agent. If this approach
produces correlations with these more complex BCs, this
would be a cause for further optimism.

To make this approach more widely useful and acces-
sible to game designers and researchers, we aim to inves-
tigate making the visualisation system publicly available
in a form that could be quickly applied to new generators
and new game domains. This could take the form of pre-



trained CNNs embedded within a system that could be
deployed to allow designers and researchers to produce
visualisations without the need for training. It would also
benefit from the development of an analytics layer, such
as systems for displaying images of the outliers within
a given generative space, or for giving representative
samples of levels that are present within one generative
space but not another.

6. Conclusion
In this paper we introduced a novel approach for pro-
ducing visualisations of the generative spaces of 2D level
generators using trained CNNs, and conducted prelimi-
nary experiments using the approach on two level cor-
puses from Super Mario and Boxoban. The results indi-
cated that it had the capacity to produce relatively robust
results, but also that the current implementation is sig-
nificantly prone to failure, as well as it under-performing
compared to our benchmark visualisation approach in
certain domains. As a result we find that while this ap-
proach has promise and warrants further investigation,
more experimentation and tuning is required before it
can be used reliably.

Acknowledgments
This work was supported by the EPSRC Centre for Doc-
toral Training in Intelligent Games & Games Intelligence
(IGGI) [EP/S022325/1]. We are also grateful for the help-
ful and informative feedback we received from the EXAG
reviewers on the initial version of this work.

References
[1] G. Smith, J. Whitehead, Analyzing the expressive

range of a level generator, in: Proceedings of the
2010 Workshop on Procedural Content Generation
in Games - PCGames ’10, ACM Press, Monterey,
California, 2010, pp. 1–7. URL: http://portal.
acm.org/citation.cfm?doid=1814256.1814260.
doi:10.1145/1814256.1814260.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, L. Fei-
Fei, ImageNet Large Scale Visual Recogni-
tion Challenge, International Journal of Com-
puter Vision 115 (2015) 211–252. URL: http://link.
springer.com/10.1007/s11263-015-0816-y. doi:10.
1007/s11263-015-0816-y.

[3] J.-B. Hervé, C. Salge, Comparing PCG Metrics
with Human Evaluation in Minecraft Settlement

Generation, in: The 16th International Confer-
ence on the Foundations of Digital Games (FDG)
2021, FDG’21, Association for Computing Machin-
ery, New York, NY, USA, 2021. URL: https://doi.org/
10.1145/3472538.3472590. doi:10.1145/3472538.
3472590, event-place: Montreal, QC, Canada.

[4] B. Horn, S. Dahlskog, N. Shaker, G. Smith, J. To-
gelius, A comparative evaluation of procedural
level generators in the Mario AI framework, in:
M. Mateas, T. Barnes, I. Bogost (Eds.), Proceed-
ings of the 9th International Conference on the
Foundations of Digital Games, FDG 2014, Liberty
of the Seas, Caribbean, April 3-7, 2014, Society
for the Advancement of the Science of Digital
Games, 2014. URL: http://www.fdg2014.org/papers/
fdg2014_paper_14.pdf.

[5] M. Jadhav, M. Guzdial, Tile embedding: A general
representation for level generation, Proceedings of
the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 17 (2021) 34–41.
URL: https://ojs.aaai.org/index.php/AIIDE/article/
view/18888.

[6] A. Summerville, Expanding Expressive Range: Eval-
uation Methodologies for Procedural Content Gen-
eration, in: Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2018.
URL: https://www.aaai.org/ocs/index.php/AIIDE/
AIIDE18/paper/view/18085.

[7] M. Cook, J. Gow, G. Smith, S. Colton, Danesh:
Interactive Tools For Understanding Procedural
Content Generators, IEEE Transactions on Games
(2021). URL: https://ieeexplore.ieee.org/document/
9426419.

[8] T. Smith, J. Padget, A. Vidler, Graph-based gen-
eration of action-adventure dungeon levels using
answer set programming, in: Proceedings of the
13th International Conference on the Foundations
of Digital Games, ACM, Malmö Sweden, 2018, pp.
1–10. URL: https://dl.acm.org/doi/10.1145/3235765.
3235817. doi:10.1145/3235765.3235817.

[9] A. Alvarez, S. Dahlskog, J. Font, J. Togelius, Inter-
active Constrained MAP-Elites: Analysis and Eval-
uation of the Expressiveness of the Feature Dimen-
sions, IEEE Transactions on Games 14 (2022) 202–
211. URL: https://ieeexplore.ieee.org/document/
9300206/. doi:10.1109/TG.2020.3046133.

[10] M. Awiszus, F. Schubert, B. Rosenhahn, TOAD-
GAN: Coherent style level generation from a single
example, in: Proceedings of the sixteenth AAAI
conference on artificial intelligence and interactive
digital entertainment, AIIDE’20, AAAI Press, 2020.
Number of pages: 7 tex.articleno: 2.

[11] M. Guzdial, N. Liao, J. Chen, S.-Y. Chen, S. Shah,
V. Shah, J. Reno, G. Smith, M. O. Riedl, Friend,
Collaborator, Student, Manager: How Design of an

http://portal.acm.org/citation.cfm?doid=1814256.1814260
http://portal.acm.org/citation.cfm?doid=1814256.1814260
http://dx.doi.org/10.1145/1814256.1814260
http://link.springer.com/10.1007/s11263-015-0816-y
http://link.springer.com/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3472538.3472590
https://doi.org/10.1145/3472538.3472590
http://dx.doi.org/10.1145/3472538.3472590
http://dx.doi.org/10.1145/3472538.3472590
http://www.fdg2014.org/papers/fdg2014_paper_14.pdf
http://www.fdg2014.org/papers/fdg2014_paper_14.pdf
https://ojs.aaai.org/index.php/AIIDE/article/view/18888
https://ojs.aaai.org/index.php/AIIDE/article/view/18888
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/view/18085
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/view/18085
https://ieeexplore.ieee.org/document/9426419
https://ieeexplore.ieee.org/document/9426419
https://dl.acm.org/doi/10.1145/3235765.3235817
https://dl.acm.org/doi/10.1145/3235765.3235817
http://dx.doi.org/10.1145/3235765.3235817
https://ieeexplore.ieee.org/document/9300206/
https://ieeexplore.ieee.org/document/9300206/
http://dx.doi.org/10.1109/TG.2020.3046133


AI-Driven Game Level Editor Affects Creators, in:
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, ACM, Glasgow Scot-
land Uk, 2019, pp. 1–13. URL: https://dl.acm.org/doi/
10.1145/3290605.3300854. doi:10.1145/3290605.
3300854.

[12] A. Wulff-Jensen, N. N. Rant, T. N. Møller,
J. A. Billeskov, Deep Convolutional Genera-
tive Adversarial Network for Procedural 3D Land-
scape Generation Based on DEM, in: A. L.
Brooks, E. Brooks, N. Vidakis (Eds.), Interactiv-
ity, Game Creation, Design, Learning, and Inno-
vation, volume 229, Springer International Pub-
lishing, Cham, 2018, pp. 85–94. URL: http://link.
springer.com/10.1007/978-3-319-76908-0_9. doi:10.
1007/978-3-319-76908-0_9, series Title: Lec-
ture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engi-
neering.

[13] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith,
S. Risi, Evolving mario levels in the latent space
of a deep convolutional generative adversarial net-
work, in: Proceedings of the Genetic and Evolution-
ary Computation Conference, ACM, Kyoto Japan,
2018, pp. 221–228. URL: https://dl.acm.org/doi/
10.1145/3205455.3205517. doi:10.1145/3205455.
3205517.

[14] A. Irfan, A. Zafar, S. Hassan, Evolving Levels for
General Games Using Deep Convolutional Genera-
tive Adversarial Networks, in: 2019 11th Computer
Science and Electronic Engineering (CEEC), IEEE,
Colchester, United Kingdom, 2019, pp. 96–101. URL:
https://ieeexplore.ieee.org/document/8974332/.
doi:10.1109/CEEC47804.2019.8974332.

[15] E. Gardini, M. J. Ferrarotti, A. Cavalli, S. Decher-
chi, Using Principal Paths to Walk Through Mu-
sic and Visual Art Style Spaces Induced by Con-
volutional Neural Networks, Cognitive Computa-
tion 13 (2021) 570–582. URL: http://link.springer.
com/10.1007/s12559-021-09823-y. doi:10.1007/
s12559-021-09823-y.

[16] K. Simonyan, A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition,
CoRR abs/1409.1556 (2015).

[17] J. Togelius, S. Karakovskiy, R. Baumgarten, The
2009 Mario AI Competition, in: IEEE Congress
on Evolutionary Computation, IEEE, Barcelona,
Spain, 2010, pp. 1–8. URL: http://ieeexplore.ieee.
org/document/5586133/. doi:10.1109/CEC.2010.
5586133.

[18] M. C. Fontaine, R. Liu, A. Khalifa, J. Togelius, A. K.
Hoover, S. Nikolaidis, Illuminating Mario Scenes
in the Latent Space of a Generative Adversarial
Network, in: AAAI, 2021.

[19] A. Sarkar, Z. Yang, S. Cooper, Controllable Level

Blending between Games using Variational Au-
toencoders, arXiv:2002.11869 [cs] (2020). URL:
http://arxiv.org/abs/2002.11869, arXiv: 2002.11869.

[20] M. Cerny Green, L. Mugrai, A. Khalifa, J. To-
gelius, Mario Level Generation From Mechan-
ics Using Scene Stitching, in: 2020 IEEE Con-
ference on Games (CoG), IEEE, Osaka, Japan,
2020, pp. 49–56. URL: https://ieeexplore.ieee.
org/document/9231692/. doi:10.1109/CoG47356.
2020.9231692.

[21] A. Khalifa, J. Togelius, Mario AI Benchmark
- https://github.com/amidos2006/Mario-AI-
Framework, 2009.

[22] A. Guez, M. Mehdi, K. Gregor, R. Kabra, S. Racaniere,
T. Weber, D. Raposo, A. Santoro, L. Orseau, T. Eccles,
G. Wayne, D. Silver, T. Lillicrap, An investigation
of Model-free planning: boxoban levels, 2018. URL:
https://github.com/deepmind/boxoban-levels/.

[23] A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racanière,
T. Weber, D. Raposo, A. Santoro, L. Orseau, T. Eccles,
others, An investigation of model-free planning,
in: International Conference on Machine Learning,
PMLR, 2019, pp. 2464–2473.

[24] S. Racanière, T. Weber, D. P. Reichert, L. Buesing,
A. Guez, D. Rezende, A. P. Badia, O. Vinyals,
N. Heess, Y. Li, R. Pascanu, P. Battaglia, D. Hassabis,
D. Silver, D. Wierstra, Imagination-Augmented
Agents for Deep Reinforcement Learning, in: Pro-
ceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17,
Curran Associates Inc., Red Hook, NY, USA, 2017,
pp. 5694–5705. Event-place: Long Beach, California,
USA.

[25] K. Simonyan, A. Zisserman, Very Deep Convo-
lutional Networks for Large-Scale Image Recog-
nition, 2015. URL: http://arxiv.org/abs/1409.1556,
arXiv:1409.1556 [cs].

[26] S. Ayesha, M. K. Hanif, R. Talib, Overview and
comparative study of dimensionality reduction
techniques for high dimensional data, Information
Fusion 59 (2020) 44–58. URL: https://linkinghub.
elsevier.com/retrieve/pii/S156625351930377X.
doi:10.1016/j.inffus.2020.01.005.

[27] O. Withington, L. Tokarchuk, Compressing and
Comparing the Generative Spaces of Procedural
Content Generators, 2022. URL: http://arxiv.org/
abs/2205.15133, arXiv:2205.15133 [cs].

[28] C. Jemmali, C. Ithier, S. Cooper, M. El-Nasr, Gram-
mar based modular level generator for a program-
ming puzzle game, AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment
(AIIDE) (2020).

[29] O. Withington, Illuminating super mario bros:
quality-diversity within platformer level gener-
ation, in: Proceedings of the 2020 Genetic

https://dl.acm.org/doi/10.1145/3290605.3300854
https://dl.acm.org/doi/10.1145/3290605.3300854
http://dx.doi.org/10.1145/3290605.3300854
http://dx.doi.org/10.1145/3290605.3300854
http://link.springer.com/10.1007/978-3-319-76908-0_9
http://link.springer.com/10.1007/978-3-319-76908-0_9
http://dx.doi.org/10.1007/978-3-319-76908-0_9
http://dx.doi.org/10.1007/978-3-319-76908-0_9
https://dl.acm.org/doi/10.1145/3205455.3205517
https://dl.acm.org/doi/10.1145/3205455.3205517
http://dx.doi.org/10.1145/3205455.3205517
http://dx.doi.org/10.1145/3205455.3205517
https://ieeexplore.ieee.org/document/8974332/
http://dx.doi.org/10.1109/CEEC47804.2019.8974332
http://link.springer.com/10.1007/s12559-021-09823-y
http://link.springer.com/10.1007/s12559-021-09823-y
http://dx.doi.org/10.1007/s12559-021-09823-y
http://dx.doi.org/10.1007/s12559-021-09823-y
http://ieeexplore.ieee.org/document/5586133/
http://ieeexplore.ieee.org/document/5586133/
http://dx.doi.org/10.1109/CEC.2010.5586133
http://dx.doi.org/10.1109/CEC.2010.5586133
http://arxiv.org/abs/2002.11869
https://ieeexplore.ieee.org/document/9231692/
https://ieeexplore.ieee.org/document/9231692/
http://dx.doi.org/10.1109/CoG47356.2020.9231692
http://dx.doi.org/10.1109/CoG47356.2020.9231692
https://github.com/deepmind/boxoban-levels/
http://arxiv.org/abs/1409.1556
https://linkinghub.elsevier.com/retrieve/pii/S156625351930377X
https://linkinghub.elsevier.com/retrieve/pii/S156625351930377X
http://dx.doi.org/10.1016/j.inffus.2020.01.005
http://arxiv.org/abs/2205.15133
http://arxiv.org/abs/2205.15133


and Evolutionary Computation Conference Com-
panion, ACM, Cancún Mexico, 2020, pp. 223–
224. URL: https://dl.acm.org/doi/10.1145/3377929.
3390043. doi:10.1145/3377929.3390043.

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual
Learning for Image Recognition, in: 2016 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), IEEE, Las Vegas, NV, USA, 2016, pp.
770–778. URL: http://ieeexplore.ieee.org/document/
7780459/. doi:10.1109/CVPR.2016.90.

[31] F. Chollet, Xception: Deep Learning with Depth-
wise Separable Convolutions, in: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), IEEE, Honolulu, HI, 2017, pp. 1800–1807.
URL: http://ieeexplore.ieee.org/document/8099678/.
doi:10.1109/CVPR.2017.195.

https://dl.acm.org/doi/10.1145/3377929.3390043
https://dl.acm.org/doi/10.1145/3377929.3390043
http://dx.doi.org/10.1145/3377929.3390043
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
http://dx.doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/8099678/
http://dx.doi.org/10.1109/CVPR.2017.195

	1 Introduction
	2 Background and Related Work
	2.1 Expressive Range Analysis
	2.2 Machine Learning and PCG
	2.3 Level Generators and Benchmarks

	3 Approach
	3.1 Stage 1: CNN Architecture and Training
	3.2 Stage 2: Embedding Extraction and Compression
	3.3 Stage 3: Validating the Visualisations

	4 Experiment Design
	4.1 Level Sets and Encodings
	4.2 Behavioural Characteristics Used
	4.3 Compression Approaches Used
	4.4 CNN Parameters
	4.5 Level Selection and Splitting
	4.6 Number of Runs
	4.7 Resources Required

	5 Results & Discussion
	5.1 Results Overview
	5.2 Future Work and Improvements

	6 Conclusion

